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Statistical Methods for Censored Survival

Data

by Norman Breslow*

Methods of statistical analysis of censored survival times are briefty reviewed and illustrated by applica-
tion to clinical trials data. These include estimation of the survival curve, nonparametric tests to compare
séveral survival curves, tests for trend, and regression analysis. Extensions of the methodology are made for
application to epidemiologic case-control studies. These are used to estimate relative risks for lenkemia
associated with radiation exposures. A final section provides some annotated references to the recent

literature.

Introduction

Censored survival data arise in a wide variety of
statistical investigations. In clinical trials one mea-
sures duration of response from start of treatment
until relapse or death due to disease. Observations
on response time are censored for those subjects still
in remission at the study’s end, as they are for pa-
tients lost to followup during the course of the study.
Antmal carcinogenesis studies, such as used by the
United States Food and Drug Administration to de-
termine the safety of food additives, provide another
example. Here the endpoint is the age at diagnosis of
a particular kind of cancer, censorship being im-
posed by death due to other causes, naturat or artifi-
cial. In tests of the reliability of airplane compo-
nents, failure times are measured from the start of
testing until failure of the component, with censor-
ship imposed by the failure of other components or
the necessity of analyzing the data before all items
have failed.

Figure 1illustrates the results for the control group
in a clinical trial designed to investigate the effects of
combined chemotherapy as an adjunct to surgery
and radiation in the treatment of childhood rhab-
domyosarcoma (/). The endpoint for analysis was
the reappearance of tumor, whether at the site of
original treatment or through distant metastasis.
Children who remained disease-free at the time the
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data were analyzed had censored observations. In
addition to the control arm lA, there were two
groups of children who received the drugs actino-
mycin-D (AMD) and vincristine (VCR): group IB
patients were concurrently randomized with the
controls, both these groups having apparently had
their tumors completely resected; group IIA con-
sisted of patients with microscopic residual disease
at the margin of surgical resection.

Interim data from all three arms are presented in
Table 1. Note that the censored observations forarm
IA, those in the column labeled “’disease-free’’, are
smaller in the table than they are in the figure. This is
because the figure was drawn from data computed at
a later point in time, when additional follow-up was
available for patients who had not already died.

Analysis of such data has several goals. For each
of the comparison groups one wants an estimate of
the survival curve, the probability of surviving ¢ units
of time. Statistical tests are required to determine
whether the observed differences between the
curves are real, or are simply chance effects. If real,
amethod of guantifying the nature of the differences
is desirable. Finally there may be available con-
comitant observations, including continuous mea-
surements such as age at diagnosis, whose joint ef-
fects on survival are important to determine.

Estimation of Survival Curves

When analyzing several groups of survival times
the first step is to form a series of 2 x r tables as
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FiGgure 1, Course of patients following surgery for rhabdomyosarcoma in Part IA, control group.

shown in Table 2. One table is formed for each of the
K distinct times 1 <tz < ... <1, at which deaths {(or
failures or relapses) occur. The column totals r,

Table 1. Interim clinical trial data: time from start of treatment to
relapse or last observation for three treatment gronps.

Time, months

Tumor completely resected Microscopic residual

Surg + x-ray Surg + x-ray
Surg + x-ray + AMD + VCR + AMD + VCR
(1A} (IB) (ITA)
Disease- Disease- Disease-

Relapsed  free  Relapsed free Relapsed  free

2 12 9 12 37 25
3 15 16 19 pi
9 18 19 20 29
10 24 20 K
10 36 24 42
i5 40 24 45
16 45 30 47
30 3 48
34 50
42 52

44

53

59

62

refer to the total number of subjects in the {* group
who remain ‘‘at risk’’, i.e., alive and under observa-
tion, just prior to time ¢t,.. The tabular entries d;, and
s denote the numbers of those who die at ¢,, and
survive t,, respectively. Table 3 illustrates the cal-
culation of the first three such tables for the data in
Table . Here r =3 and st = 2, r2 =3, and s = 9
months. Note that the tables for increasing r;, refer to
a constantly diminishing population ‘“‘at risk™ as
additional subjects die or are withdrawn (censored)
from further observation.

Kaplan and Meier (2) derived the maximum likeli-
hood nonparametric estimate of the survival curve
based on censored data, This may be calculated re-
cursively, starting from P(re) = 1, and by using the
formula (1):

Pt} = P(t) (sifmp) (1)

Table 2. Formation of 2 X » contingency tables comparing death
rates among r treatment groups at each distinct time of death.

Patients followed to time ¢, for various treatment groups

1 2 — r Totals
Deaths (at 1) dix ey — dee Dy
Survivors S Sai — Sric Sk
Total “*at risk” i o — Roge N
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‘Table 3. Flustration of 2 X r tables for data in Table 1.

1, months 1A IB A Total
2 Relapsed 1 0 ] 1
Disease-free 14 17 11 42
‘At risk"” 15 17 11 43
Expectations: 0.349 0395 0.256 1.000
3 Relapsed 1 0 0 1
Disease-free 13 17 11 41
**At risk™ i4 17 It 42
Expectations: 0.333 0405 0.262 1.000
g Relapsed 1 1 0 2
Disease-free 12 16 11 39
“AL risk™ 13 17 11 41
Expectations: 0.634 0.829 0.537 2.000
fork =1,2, ..., K. {The group index i has been

suppressed for clarity.) In other words, the proba-
bility of surviving past ¢, is estimated as the proba-
bility of surviving past t._; times the conditional
probability of surviving past ¢; given survival 10 ¢,.
Because of this multiplicative structure, Kaplan and
Meier refer to their estimate as the product limit (PL)
estimate. In case there is no censorship in the data, it
reduces to the familiar empirical distribution func-
tion.

Table 4 shows the calculation of the relapse-free
survival curve from the interim data in Table 1 for
treatment group IA. The corresponding curves cal-
culated from final study data for all three treatment
curves are shown in Figure 2. Numbers above each
curve at annual intervals in this figure refer to num-
bers of patients still at risk in each group. These are
an important means of judging the stability of the
estimates, which can in fact be quite unstable in the
*tail” of the survival distribution where few subjects
remain at risk.

The variance of the PL estimate may also be cal-

Table 4. Estimation of survival curve for group IA.

Time, Number Number  Conditionat  Survival
months at risk surviving  probability probability
Ty g Sk plty) Plty)

b 15 14 0.933 0.933
3 14 13 0.929 0.866
9 13 12 0.923 0.799
10 12 10 0.833 0.666
15 9 8 0.888 0.592
l6 7 6 0.857 0.507
30 4 3 0.750 0.381
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FIGURE 2. Duration of the disease-free interval in patients from
Part [A (control), IB (treated), and ITA (microscopic residual,
treated). Shown above each curve at 24 and 48 months are the
numbers of patients known to be disease free after those time
periods.

culated recursively, starting from V{P (10)} = 0. One
uses the formula (2)

VP (10} = .
V{P (ti)} (s%/mP) + {P (1)} [di/(nis)]  (2)

with the understanding that it is applied sequentially
to tied observations. In large samples, P(t) is ap-
proximately normally distributed with mean equal to
the true survival function P(f) and a variance esti-
mated as shown above (2, 3). Note that neither P (7)
nor V{P {£)} will change after the last uncensored
response time in each group, even though additional
subjects contimie to be withdrawn from observation.
In this region the estimated variance often does not
accurately reflect the true variability in the survival
curve, which will be substantial unless large num-
bers of subjects remain on study.

Comparison of Survival Curves

A simple but powerful non-parametric test for the
comparison of » survival curves with censored data
may also be calculated from the basic data shown in
Table 2. This test exploits the fact that, under the null
hypothesis of no difference in the underlying survi-
val distributions and conditional upon fixed values
for the marginal totals in each 2 X r table, the vector
d. = (dw, ..., d.) of observed deaths at 7, has an
r-dimenstonal hypergeometric distribution. Con-
sequently the null expectation of the number of
deaths in group i at #;. is

ey = Eldy) = ny (DYNy) (3)

i.e., the number at risk in the /-th group times the
death rate for all r groups combined (see Table 3 for
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an illustration of this calculation). The covariance
matrix ¥, of d,. has, under the nuil hypothesis, an (/,5)
component equal to

npN — ng) DSy
N2 (N — 1)
Rt d Sy

B o
N2 (Npy) t7

Vil = (4)

The main idea behind the test is to sum uvp the
statistics calulated from each of the K tables into a
vector 0 = Z.d, of observed numbers of deaths in
each group, a vector E = I.e, of expected numbers
of deaths, and a summary covariance matrix V =
3. V.. Since the 2 x r tables refer to overlapping sets
of subjects they are not, strictly speaking, statisti-
cally independent. Nevertheless Cox (4) has shown
that V is an appropriate large sample covariance
matrix for O-E. Since X0, = XF;, i.e. the totals of
observed and expected deaths in all r groups agree, V
is singular. However, defining O* and E* to be the
first ¥ — 1 components of @ and E, and V* to be the
(r — 1) x (r — 1) upper left hand corner of V, a test
statistic for testing equality of the r survival curvesis
obtained as

T1 = (0* — E¥YV*1 (0* - E¥) (5)

This is approximately distributed as chi-square on
r — | degrees of freedom under the null hypothesis.

The test T was first proposed for survival data by
Mantel (5). Cox (6) later dertved it from likelihood
theory under the proportional hazards (PH) model,
in which the instantaneous death rates in the r groups
are assumed to be in constant ratio throughout the
follow-up period (see below). Peto and Peto (7) ar-
gued that it was an asymptotically efficient test under
Cox’s model and named it the “‘log rank’ test.

A conservative approximation to 71 which re-
quires no matrix inversion is given by the familiar
cht-square formula

[

I:=

i

(O; — EVIE; (6)

While T2 = T, in fact the two statistics will be quite
close, provided that there are few ties among the
uncensored survival times (i.e., most of the I}, in
Table 2 are unity) and that the patterns of censorship
operating in the r groups are not grossly different (&,
9). Note that the ¥4 continuity correction should not
be used with survival data.

Table 5 illustrates the manner of presentation of
the summary and test statistics. Note the calculation
of the ratio O/E of observed to expected numbers of
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Table 5. Summary statistics for interim clinical trial data.

Treatment group

1A IB 1A
No. of patients (V) 15 17 11
Relapses observed (0) 8 3 1
Relapses expected (E) 31 4.99 3.90
O/E 2.57 0.60 0.26
W scores -179 68 1
Covariance matrix V
2.22
—1.27 2.86
—0.94 -1.59 2.53
Covarlance matrix ¥,
2954
—1748 3572
—1206 —1824 3030
aTest statistics;
T: = 11.10, 2 df, p = 0.004
T: = 10,77, 2 df, p = 0.005
Ta = 11.41, 2 df, p = 0.003
Te= 1120, 2 df, p = 0.004

deaths in each treatment group. These are very use-
ful as measures of treatment effect, since their ratios,
e.g., O1/E1 + O/Ez, approximate the ratios of death
rates in the respective treatment groups (/0).

Alternate Weighting Schemes

The summary statistics O — E weight the observed
differences d,. — e, in each table in a manner which is
appropriate to the PH model already mentioned.
However this 1s not the only possible weighting
scheme. Multiplying the observed differences by N,
the total number of subjects in the 4£-th table, and
then summing, gives more weight to the earlier times
t; when larger numbers are at risk. This leads to the
scores

K
Wi= I {Ndy — nyDy} {7)
=1
covariance matrix
LY
Vo= 3% N2V, (8)
k=1
and test statistic
Ta = WHV, * 1w+ 9)

where asterisks (*) denote the corresponding r — 1
dimensional quantities. A conservative approxima-
tion to Ty not requiring matrix inversion is
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W2IG; (10

Ti= %

with

K
z {NkaSknik-'ka—l} (1)

k=1

G;

The scores W, may also be obtained from a pair-
wis¢ comparison of the observations in the i-th
treatment group with those in the remaining r — 1
groups. Each such pair is assigned the value +1 (or
—1) according as the true survival time for the first
pair member is known to be smaller than (or larger
than) that for the second member. Ties or indetermi-
nate comparisons due to censorship are assigned 0
values. Gehan (I7) suggested the use of such scores
for the comparison of two samples (- = 2}. In this
case T4 reduces to the familiar Wilcoxon rank sum
test in the absence of ties and censorship. Breslow
(12) extended this work to r > 2 samples, proposing
the covariance matrix V,, and the statistic Ta. These
latter statistics, like V and 71, are valid for situations
where the patterns of censorship operative in the r
treatment groups are unequal, as in animal car-
cinogenesis studies where there is differential toxic
mortality. The conservative approximation Ts, like
Tz, i1s strictly valid only where there is equality of
censorship.

In practice, the tests Ty and T3 often yield rather
similar numerical values (see Table 5). However,
this is not always true, and some comment on the
proper interpretation when only one statistic is sig-
nificant is in order. Since Tz weights early values
more heavily, it may achieve significance when there
is an early separation between the survival curves
which later come together or even cross over. T:
gives more weight to the later appearing deaths. A
large discrepancy between T1 and T3 generally indi-
cates an interaction between treatment and time on
the instantaneous death rates, which is worthy of
investigation in its own right.

Testing for Trend

Often the r comparison groups correspond to r
levelsxi <<x: < ... x,of aquantitative variable such
as dose. Global chi-square tests such as T1 through
T4lack statistical power in such situations since they
take no account of the natural order of the groups.
One needs a single degree of freedom test for trend in
survival with increasing dose.

Fortunately such a test is readily calculated from
the summary statistics already at hand. In the case of
the log rank analysis
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_ X' (0 - E}

12)
x'Vx (

5

1s a single degree of freedom chi-square for a linear
trend of O-FE with x. Tarone (/3) has suggested using
Ts = T1 — Ts as a chi-square on r-2 degrees of free-
dom for deviations from linearity, An approximation
to Ts which only requires calcuolation of the O and E
vectors is given by

{Zx; 0y - E}?
Ty = , (13)
SE — (B EIRE,
Similarly, when using the W scores,
X'W}2
Ts = {, ! (14)
X'V, x

provides a test for linear trend and Te = T3 — T7 a test
for deviations from linearity.

To illustrate these calculations by using the sum-
mary data in Table 5, make the fictitious assumption
that the three treatment groups 1A, IB, and 1IA cor-
respond to dose levels x1 = 0, x2 = 1, x3 = 2. The
statistics for trend are Ts = 9.17 (p = 0.002), T7 =
8.72 (p = 0.003), and Ts = 10.02 (p = 0.002). The
deviation chi squares are Te = 1.93 (NSYyand Ty =
1.39 (NS). Hence, this would be a case where the
already significant differences are largely explained
on the basis of an apparent linear trend in survival
with increasing dose.

Adjustment by Stratification

When the r comparison groups differ with respect
to factors which influence survival, an analysis
which corrects for their possible confounding effects
is needed. This may be carried out very simply by
dividing the population into strata which are more or
less homogeneous internally with respect to the
confounding factors. (Of course the number of con-
founders which may be accommodated simultane-
ously in this fashion is limited, since if strata become
very large in number and small in size a substantial
loss of comparative information may result.) Sepa-
rate survival analyses are performed within each
stratum by calculating the summary statistics O, E,
and V defined earlier. These are cumulated by simple
addition over strata and used to calculate adjusted
test statistics T1, T2, Ts5, Te and Tv, in which the
cumulated summary statistics replace the stratum
specific ones. Likewise adjusted versions of T3, Ts,
and Ts use the cumulated W and V,, statistics.

Such a stratified analysis was used for a trial of
maintenance chemotherapy for children with acute
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lymphocytic leukemia (/4). For this disease it is well
known that the diagnostic white blood count (WBC)
is an important prognostic factor. The treatment
group, consisting of 152 children who received ac-
tinomycin (AMD) in addition to standard mainte-
nance drugs, had a median WBC of 10,067; whereas
the control group, consisting of 116 children who did
ot receive AMD, had a median WBC of 14,280. An
analysis ignoring this difference in WBC compared
the observed number of relapses in the treated and
control groups, 01 = 100 and Oz = 81, with expected
numbers of E1 = 113.00 and E: = 68.00. This yielded
an {unadjusted) chi-square of Tz = 3.98, which is just
on the borderline of 5% statistical significance,

In order to determine whether the apparent effec-
tiveness of AMD was due, at least in part, to the
generally lower WBC’s among treated patients, the
entire sample of 268 children was divided into three
strata as shown in Table 6. A separate calculation of
the observed and expected numbers of relapses was
made within each stratum, so the totals of O’s and
E’s taken across each row of Table 6 agree. The
adjusted expected numbers, E1 = 110,96 and E: =
70.04, are now closer to the observed numbers and
give an adjusted chi-square of Tz = 2.80, which is no
longer statistically significant.

The estimated ratio of relapse rates in the treated
vs. control group is 100/113.0 + 81/68.0 = (.74,
When adjusted for WBC in three strata, it is 100/
110.96 = 81/70.04 = 0.78, again indicating less of a
difference between treatment and control group.

Regression Analysis of Survival
Data

If the number of confounding variables is large,
stratification breaks down since there will be many
strata with just one or a few subjects. it may also be
of interest to quantify the relationship between sur-
vival and several discrete or continuous and con-

Table 6. Stratified analysis of additive maintenance therapy for
childhood lenkemia according to diagnostic white blood count.

Treated patients? Controls®
White blood
count(stratum) N O E N (4] E
04,999 51 25 27.08 36 18 15.92
5,000-19,999 58 38 44,64 37 18 21.16
20,000 + 43 37 39.04 43 35 32.96
Totals 152 100 110,96 116 81 70.04

AN = number of patients; ¢ = observed numbers of relapses; E
= expected numbers of relapses.
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comitant variables. This situation calls for a regres-
sion approach.

The usual regression model specifies that the
survival times, or some transform such as their
logarithm, are equal to a linear combination of the
concomitant variables plus a random error term.
Unfortunately, to generalize such models for use
with censored data is awkward and computationally
involved. Thus considerable interest was aroused by
Cox (6) when he proposed a model formulated in
terms of the effect of the regression variables on
instantaneous death rates rather than on times of
death per se. This model turned out to be quite tract-
able computationally and, as an added benefit,
avoided any parametric assumptions about the shape
of the underlying survival curve.

Cox’s model is defined in terms of the time t
specific death rate or hazard function A(z|z) for an
individual having a p-vector of covariates z. Specifi-
cally he assumes A(7|z) = exp(8'z)Ao(t), where B1is an
unknown p-vector of parameters (regression coeffi-
cients), while Asf#) is the unknown hazard or death
rate function for an individual with a standard (z = O}
set of convariates. A consequence of this model is
that the ratio of hazard functions for two individuals
with different sets of covariates,

A|z1)

At |zz)
does not depend on time. Thus it is called the pro-
portional hazards (PH) model.

Several authors ¢, 6, 10, 15-17) have developed
the likelihood analysis of the PH model from rather
distinct points of view. Providing that there are no
ties in the uncensored data, all derive for the In-
likelihood function of the expression

= exp {8’ (z1 — 22)} (15

L@ = S {8z —In % exp(@z)}  (16)
k=1

JERI)

Table 7. Mustration of fitting of proportional hazards regression
model to data ont 268 children with acute leukemia.

Regression coefficients

No. of Ln-
vars Likelihood log(WBC)  Age Age?  RX (0/1)

0 ~900.84 — — —_ —

1 —881.57 0.783 — — —
(6.367)2

3 —877.99 0.737 ~0.186  0.0145 —
(5.876) (—2.290) (2.621)

4 ~876.95 0.721 -0.189  0.0148  -0.220
(5.709) (—2.316) (2.647) (—1.452)

#Standardized regression coefficients in parentheses.
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where R{t,) is the risk set of subjects still alive and
under observation just prior to t;; 7 is the covariate
vector for the individual who dies at7;; and the outer
summation is over all K true (uncensored) times of
death. Different likelihoods arise in the case of ties.

Taking the vector of first partial derivatives of L,
setting equal to O and so}ving the resulting nonlinear
equations yields a maximum likelihood estimate 8
for the regression coefficients. A covariance matrix
for this estimate is obtained in the usual fashion by
inversion of the negative of the matrix of second
partials of L. The integral

t
Ao(t) = J‘ Mo(u)du (17

defines the cumulative hazard function for the stan-
dard covariate set. Once 8 is obtained this may be
estimated by

Ay = 2 (2 exp{Bz}) (18)

=t JeRiry

where the outer summation is again over true survi-
val times ¢, less than or equal to 7. The corresponding
estimate of the survival function

Poft) = exp { —Ao (1)} (19)
is
. 1
P = M1 s
st X i
rerio P (20)

Notice that when B = 0 this reduces to the PL esti-
mate of Kaplan and Meier, calculated from the entire
set of observations considered as one homogeneous
sample.

Table 7 illustrates the computer fitting of the PH
model to the data on 268 leukemic children. Four
regression variables were considered: z: = log
(WBC), z: = age at diagnosis (years), zs = z%, and z4
= 1 or 0, according as the patient was treated with
AMD or was a control. These four variables were
entered into the regression equation sequentially in
order to demonstrate their effects on remission du-
ration after adjustment for the preceding variables. A
quadratic term in the age variable was required: chil-
dren in the mid ranges from 2 to 6 years have a better
prognosis than at either extreme. The multiplicative
effect of treatment on the relapse rate is given by exp
(B4) = exp (— 0.220) = 0.80, which is quite compara-
ble with the approximate value 0.78 obtained from
the simpler stratified analysis. The likelihood ratio
test for treatment effectiveness yields a chi-square of
2(—876.95 + 877.99) = 2.09; squaring the standard-
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ized regression coefficient gives a similar value
(—1.45)* = 2.11. These are both even smaller than
the value of 2.80 obtained after adjustment for WBC
in three strata, so that the regression approach has in
this case led to an even greater reduction in the
statistical significance of the treatment comparison.

As a means of providing a graphical display of the
fit of the model, the regression coefficients were
used to calculate a prognostic score for each child
using the formuia

S = 21B1 + z2B2 + zaBs + 24P 21)

Each of the covariates z was first normalized by
subtracting off the mean, so that a score § = O repre-
sents a *‘typical’’ patient. The scores were then used
to divide the sample into four groups within each of
which PL estimates of the remission duration were
calculated. These are plotted in Figure 3 together
with predicted remission duration curves, estimated
from the model, for specified values of S. Notice that
the predicted curves lie further apart than do the
“observed”’ curves for later days, while the reverse
is true for earlier days. This behavior indicates a
certain lack of fit of the model, namely that the
baseline covariates have more of an effect on early
rates of relapse than they do on later ones. The fit
could be improved by use of time-dependent
covariates z(r) as discussed by Cox 6).

The PH Model in Epidemioiogy:
Applications to RERF Data

The methodology of survival analysis, especially
the PH model developed in the last section, is also
useful with epidemiologic studies of risk factors for
chronic disease. In this context ¢ often represents
age, and the endpoint is diagnosis of, or death from, a
particular disease in a previously disease-free indi-
vidual, Aoff) may then be interpreted as the age-
specific incidence or mortality rate for a standard
covariate set, while exp (8'z) represents the relative
risk or rate ratio (RR) for a subject with covariates z.
These are computed from the presumed risk factors
under investigation and may themselves depend on
age. Application of the previously discussed
methodology based on the PH model is straightfor-
ward, at least in principle. A slight modification is
that the risk sets R(f,)} may change with age not only
due to the loss of individuals from further observa-
tion, as in clinical trials, but also from the enrollment
of new subjects in the study at later ages.

Prospective epidemiologic studies involve a
cohort of disease-free persons who are enroljed at
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FiGURE 3. Remission duration curves for four groups of leukemic children according 10 thetr prognostic
score, and predicted curves on basis of the PH model,

various ages and kept under continuous surveillance
until they either develop the disease, or else are lost
to further observation or die from another cause. In
order to collect enough cases of rare chronic dis-
eases, tens or even hundreds of thousands of persons
may have to be followed over several years. For
example, the Radiation Effects Research Founda-
tion (RERF) has kept nearly 100,000 survivors of the
Hiroshima and Nagasaki atomic bomb blasts under
surveillance for nearly three decades, losing fewer
than 0.1% to emigration. With such large cohorts the
previously discussed iterative methods for estima-
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tion and testing of the parameters S and Ao are neither
feasible nor necessary.

One method of dealing with large cohorts is to
partition the time or age axis into intervals, say tenor
twenty, and to postulate a discrete time model for the
conditional probabilities of failure within each one.
Suppose there are K such intervals (0,111, (#1,12], . . .,
(tx_1» tx], and set

pilz} = PIT = t;|T < f1. 2] (22)
fork =1, 2, ..., K, where T denotes the random
failure time (age at diagnosis or death), for a subject

Environmental Health Perspectives



with covariates z. Such an individual contributes a
term p,(z) to the likelihood if he develops the disease
in the k-th interval, and a term {1 — p.(z)} if he
survives it. If he dies of other causes (is censored) in
the interval, Thompson (18) makes the sensible rec-
ommendation that he contribute aterm \j1 — p,(z), to
reflect his survival disease-free over only a part of
the interval.

Cox (6) suggested the use of the linear logistic
model

logit py(z) = a; + B (23)
where

logit () = In {p/(} — p)} 24)

This reduces to the PH model in the limit as X in-
creases and the time or age intervals become infi-
nitely small. The term exp (8’ z) in Eq. (23) repre-
sents the odds ratio of disease occurrence in each
interval,

p(zH{1 — pi (O}
= ' (25)
T - paey P

rather than the ratio of instantaneous failure rates,

A simifar model was one of several used by Otake
(19) to explore the effects of radiation on cause-
specific mortality using RERF data. He divided the
sample into five groups according to age at the time
of bomb (ATB) and six classes according to esti-
mated total radiation doses, and considered a variety
of causes of death as the endpoint. If #;; denotes the
number of subjects in age group i and radiation class
J, while d; denotes the number of deaths due to
specific cause, then his model states

l()git E(duf'ﬂ,j) = o + Bj (26)

subject to appropriate constraints on the parameters.
This is a linear logistic model for the unconditional
probabilities of death over a defined period (in this
case 1950-1972) and so does not explicitly account
for competing causes of death or differential losses to
further observation which may be taking place in the
30 age x dose cells.

Cox’s model based on the conditional probabilities
would further divide the follow-up period into K
intervals, say 1950-1954, 1955-1959, etec. If ny;, then
denotes the number of subjects who were age/ ATB,
received radiation dose j, and who remained alive at
the midpoint of the k-th interval, the model is

logit E(dijk/n,-_,-k) = oy +ﬁj + Y (27)

One might include also an interaction term (ay);, so
as to allow age and calendar time to have essentially
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arbitrary effects on disease incidence. The numbers
of deaths d;3 may be formally considered to have
independent binomial distributions conditionally on
the ny, ).

A different approach to this problem, termed by
Mantel a **synthetic retrospective study,” is to draw
a small sample of disease-free ‘‘controls’” from each
of the risk sets R(#,) for comparison with the dis-
eased cases as they arise, The very same theory and
methods may be applied also to actual case/control
studies in which cases are ascertained as they occur,
for example through a population based disease re-
gister. The controls, instead of being obtained from a
computer file, are samples from the population in
which the case arose. They may be patients with
different diagnoses in the same hospital, chosen from
the same family or neighborhood, or simply sampled
at random from the population,

While it is impossible to estimate the incidence
rates Ao(f) without studying the full cohort, the PH
model assumed for the prospective study implies a
probability structure for the sample cases and con-
trols which may be used to estimate the parameter 8
describing the RR associated with the covariates
(20). Specifically, suppose m = m{t) cases having
covariate vectors z,, ..., Z,, are diagnosed (or die)
with the particular disease at age r. Suppose also that
n disease-free controls with covariales Z,,.q, - . . Zmin
are drawn at random from the risk set. The analysis is
performed conditionally on fixed values for m, n and
the combined set of # + m observed covariate vec-
tors. Using Cox’s linear logistic model for the condi-
tional failure probabilities, the likelihood that m in-
dividuals with indices /1, ..., {, are cases and the
remainder are controls, given that they all survive to

age t, is
CXp {(O! + B’ Zyiy I1 (l + exp {(I + ,B’Zj})—l
' i (28)

[ -

where a = a(?). Consequently the conditional proba-
bility that the first m z’s correspond to cases (as
observed), and the remainder to controls, is

exp {(8's)}
3 exp (B's)
teR (m,n} (29)
where I = ({1, ..., [,) ranges over the set R(m,n) of
("™ subsets of sizem from {1,2, ...,m +n},s=12,
+ ...tz and s, =7, + ... F 2y,

If i, cases and n;, controls are sampled at age #;,
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the conditional likelihood function for 8 may be
written

M exp (B T exp{B's)

k=1 leR(my,ny) (30)

This expression is formally identical to that given
earlier for the PH model in survival analysis. How-
ever now the risk sets R{t;), instead of containing
everyone still alive and disease-free at ¢,, are re-
placed by the much smaller sets of m, + n, subjects
actually sampled for the retrospective analysis.

In practice, the sets of m + n cases and controls
may be matched on other variables x besides age, for
example on risk factors already known to be as-
sociated with the disease under investigation. The
PH model may then be generalized to

A(t|z,x) = exp {B'z} roft|x) (31

which allows the underlying incidence function e to
depend in an arbitrary way on x as well asz. Interac-
tions between the matching variables and the risk
factors continue to be modelled in z. Retrospective
sampling carried out within risk sets having similar x
and t values leads to the same conditionatl likelihood
given above (20).

A special case of the conditional likelihood occurs
when each case is individually matched to exactly R
controls, a situation found often in practice. Suppose
there are K such sets and denote by zy, the covariate
vector for the case and by zy,, . . ., Zu the covariates

of the controls in the k-th set, k = 1, ..., K. The
conditional likelthood may then be written

1

-
[t

(32)
1 R
i+ _2 exp {8 (z — zor)}

i=1

This approach was taken with an RERF data file
consisting of records on 7078 males who were 50+
years old ATB. Thirteen deaths from leukemia oc-
curred {Table 8). For ¢ach of these a search was
made to determine the risk sets of potential controls
who had the same age ATB (exact year), were resid-
ing in the same city (Hiroshima or Nagasaki), and
who were alive at the end of the same year in which
the case died. These ranged in size from 30 to 508
individuals.

In order to illustrate the application of the case/
control methodology, a series of 1, 2, §, 10, and 20
controls was drawn at random from each of the risk
sets. Two covariates were computed from the esti-
mated radiation dose (in rads) for each subiject:
z1 = In (rads + 1) and z2 = rads. The choice of In
(rads + 1) as a covariate in the PH model, which
implies there is a linear increase in In RR with In (rads
+ 1), was based on two facts: the highly skewed
distribution of radiation doses; and Figure 2 of Otake
{19), which shows a nonlinear increase in In RR with
dose after about 200 rad. The alternate transforma-
tion Jrads was used for comparison.

Results of the matched analyses based on the dif-

Table §. Summary data on records used for matched case-control analysis of RERF files.

Risk set
Age Year of Dose,

Case D City ATB death rad Size Dose!?
1 252750° H 56 1957 0 303 2
2 2786240 H 56 1957 14 303 l
3 090238 N 50 1967 325 73 4
4 091006 N 55 1959 163 79 2

254898 H 60 1953 Q 251 4

6 257863 H 51 1953 24 508 2
7 275949 H 51 1958 238 445 2
8 400967 H 57 1954 574 345 2
9 401117 H 63 1958 867 116 1
10 434199 H 66 1956 8 % 2
1 437743 H 52 1963 38 293 3
12 468806 H 50 1960 NIC® 419 2
13 083922 N 50 1976 13 30 6

a3Geometric mean dose for 30 controls sampled at random from risk set.
UNote that these two cases have identical risk sets as they lived in the same city and had the same years of birth and death.

°Not in city ATB (0 dose).
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Table 9. Results of case-contro! analysis of radiation exposures and leukemogenesis among males age 50+ ATB.

Number of Coefficients RR estimate for dose
controls in -

Covartate analysis B S.E. 10 50 200 Ln-Lik
z = In (rads + 1) 1 0.284 0.201 1.98 3.06 4.51 -7.78
2 0.434 0.205 2.83 5.50 9.97 -11.08

5 0.482 0.163 3.18 6.66 12.91 -17.69

10 0.415 0.134 2.71 5.12 9.05 —25.88

20 0.475 0.13 3.12 6.48 12.43 -32.75

z= \mds 1 0.049 0.046 1.17 1.42 2.02 ~8.34
2 0.085 0.049 1.31 1.83 3.35 1222

5 0117 0.044 1.45 2.28 5.20 —18.89

i0 0.095 0.033 1.35 1.96 3.83 —-27.18

20 0.077 0.029 1.28 1.73 2.98 -35.90

Table 10. Comparison of matched and unmatched analyses of RERF files: twenty controls per case.

Regression coefficients = S, E. RR estimate for dose

Covariate Const z z® 10 50 2003
z = In (rads -+ 1) Matched — 0.475 = 0.131 — 312 6.48 12.43
Unmatched —3.971 = 0.484 0.453 = 0.123 — 2.96 5.93 11.04
Unmatched —4.105 = 0.583 0.626 + 0.386 - 0.027 = (0.056 3.85 7.77 13.08

Test for quadratic effect: ¢ = 0.23

z = jrads Matched — 0.077 = 0.029 — 1.28 73 2.98
¥ Unmatched --3.332 + 0.337 0.072 = 0,027 —_ 1.18 1.67 2.77
Unmatched —3.877 + 0.470 0.255 = 0.100 —0.005 = 0.004 2.20 4.7 13.33

Test for quadratic effect 33 = 7.34

ferent numbers of controls are shown in Table 9.
Note the decrease in the estimated standard errors as
additional controls are used; however the gain af-
forded by using twenty rather than ten controls is not
great. The regression coefficients of 0.4—0.5 for In
{rads + 1) indicate that, roughly speaking, the risk of
leukemia increases by about 5% for every 10% in-
crease in radiation dose.

The disparity between the relative risks fitted
under the model z = In (rads + 1) vs. those fitted by
z = Jrads is quite noticeable, especially when one
recalls that most doses fall in the 0 — 200 range. In
order to try to understand better why this might
occur, unmatched logistic regression analyses were
carried out on the data consisting of all cases and the
sets of twenty controls. The estimated slopes and
standard errors were similar to those ebtained with
the matched analysis (Table 10). However the inter-
cepts, corresponding to the estimated log odds of
leukemia in the sample at a dose of zero rads, dif-
fered marked!y between the two models: o = —3.97
forz = In (rads + 1) vs. & = —3.33 for z = rads.
Differences in the estimated relative risk between
the two models were thus explained largely by the
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differences in the absolute risks estimated for the
baseline value of the covariate.

A potential hazard of the regression modelling of
relative risks is its sensitivity to the choice of scale on
which the covariate is measured. Goodness of fit of
the model to the data is essential for proper in-
terpretation, and should be explored thoroughly.
When both linear and quadratic covariate terms were
fitted with the models above, for example, the
agreement between the estimated values for o im-
proved substantially. Moreover the fact that the
quadratic term was highly significant for the \rads
model, and not at all significant for the In (rads + 1)
model, showed that the latter gave much better fit to
these data (Table 10),

Further Reading

Much of the above material is presented in greater
detail in a review article {{0) on the PH model and its
applications to survival data. Some additional appli-
cations of this model to epidemiologic studies are
given by Breslow et al. (27, 22). Peto et al. (23)
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present a thorough discussion of its use in the design
and analysis of clinical trials.

A computer program for calculating the PL esti-
mate and ail the test statistics presented in sections
2-5 above is available (24).

Several authors have pointed out that the W scores
defined do not lead to the most efficient generaliza-
tion of Wilcoxon’s test to censored data. They all
propose essentially the same statistic as an alternate
generalization (7, 25, 26).

A comparison of the efficiencies of the test statis-
tics using Monte Carlo techniques is made by Lee et
al. 27). Efron (17) discusses the efficiency of the
likelihood function used with the PH model from a
more abstract viewpoint; see also Kalbfleisch (28).

Additional extensions of the PH regression model
for use with grouped or heavily tied data are dis-
cussed by Cox (6), Kalbfleisch and Prentice (/5),
Thompson (/8), and Prentice and Gloeckler (29).

This work was supported in part by Grant CA-11722 from the
U.S. National Institutes of Health.
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